НУНАЕВА Аминат Майрбековна

ВОЗМОЖНОСТИ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ В ДИАГНОСТИКЕ МАЛЬПЕРФУЗИОННОГО СИНДРОМА ПРИ ОСТРОМ РАССЛОЕНИИ АОРТЫ

3.1.25. Лучевая диагностика

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в ФГАОУ ВО «Первый Московский государственный медицинский университет имени И. М. Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет) на базе ГБУЗ "Научно-исследовательский институт скорой помощи имени Н.В. Склифосовского Департамента здравоохранения города Москвы"

Научный руководитель:

Академик РАН, профессор

Коков Леонид Сергеевич

Официальные оппоненты:

доктор медицинских наук **Вишнякова Марина Валентиновна**, ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М. Ф. Владимирского» Минздрава Московской области, отделение лучевой диагностики, ведущий научный сотрудник

доктор медицинских наук, профессор **Троян Владимир Николаевич,** ФГБУ «Главный военный клинический госпиталь имени академика Н.Н.Бурденко» Минобороны России, начальник рентгенологического Центра, главный рентгенолог госпиталя

Ведущая организация:

ФГБНУ «Российский научный центр хирургии имени академика Б.В. Петровского»

Защита состоится «18» сентября 2023 г. в 14.30 часов на заседании диссертационного совета 21.1.056.01 на базе ФГБУ «Российский научный центр рентгенорадиологии» Министерства здравоохранения Российской Федерации по адресу: г. Москва, ул. Профсоюзная, д. 86

С диссертацией можно ознакомиться в научной библиотеке и на сайте ФГБУ «Российский научный центр рентгенорадиологии» Минздрава России (117997, г. Москва, ул. Профсоюзная, д. 86) http://www.rncrr.ru

Автореферат разослан « » августа 2023 г.

Ученый секретарь диссертационного совета.

Доктор медицинский наук, профессор

Цаллагова Земфира Сергеевна

Общая характеристика работы

Актуальность исследования

Своевременная диагностика и лечение больных с острым расслоением аорты продолжает оставаться одной из самых важных и обсуждаемых проблем неотложной медицины. В мире расслоение аорты встречается с частотой 35 случаев на 100000 человек в год [Nienaber C.A. et al., 2016]. Вместе с тем есть данные, что эти цифры увеличиваются с каждым годом, независимо от степени старения популяции [Olsson C. et al., 2011]. Острое расслоение аорты представляет собой опасное для жизни состояние с высокими показателями заболеваемости и смертности. Оно возникает вследствие образования дефекта интимы (внутренней оболочки стенки аорты) с последующим поступлением крови в дегенеративно изменённый средний слой и продольным расслоением стенки аорты на внутренний и наружный слои с формированием дополнительного внутрисосудистого канала (ложного просвета). Своевременная диагностика эффективное хирургическое лечение привели к тому, что результаты вмешательств по поводу острого расслоения аорты значительно улучшились [Harrington D.K. et al., 2011]. Однако для пациентов, страдающих мальперфузией, прогноз остается неблагоприятным [G Lee et al., 2023]. Это требует развития более точного диагностического поиска с целью формирования усовершенствованных методов лечения.

Мальперфузия — это осложнение расслоения аорты, проявляющееся нарушением кровоснабжения органов и приводящее к их ишемии, результатом чего являются органная дисфункция и системные нарушения. По данным ряда авторов [Contreras V. Et al., 2018; Salmasi M.Y. et al., 2020], она возникает вследствие сужения просвета одного или более сосудов и встречается достаточно часто, примерно в 25-30% от общего числа случаев острого расслоения аорты.

Мальперфузионный синдром является независимым предиктором летального исхода у пациентов с острым расслоением аорты более чем в 60% случаев. Снижение либо полное отсутствие поступления крови к жизненно важным органам через магистральные ветви аорты требуют незамедлительной реперфузии, однако, клинические проявления мальперфузионных осложнений могут быть малозаметны, как правило, выявляются поздно, что приводит к неблагоприятным исходам лечения. Для решения данной проблемы требуется быстрая и точная диагностика уже возникших патологических изменений, а также определение предикторов мальперфузионных изменений с целью своевременного планирования алгоритма лечебных действий.

Существует большое количество работ, посвященных лечению этого осложнения [Сирота Д. А. и др., 2019; Chiu P. et al., 2018 и т.п.], но недостаточно количество исследований по ранней диагностике. Компьютерная томография (КТ), будучи одним из наиболее информативных и точных методов диагностики острого расслоения аорты и его осложнений, по данным Международного регистра расслоения аорты (IRAD), является первым диагностическим исследованием, которое выполняется примерно у 70% больных с подозрением на острый аортальный синдром [Luc LGY, 2023]. КТ позволяет представить данные о характере расслоения, диаметре истинного просвета, степени стеноза сосуда [Атьков О.Ю. и др., 1998; Терновой С.К., 2012; Тюрин И.Е., 2003; Ховрин В.В. 2016].

К преимуществам этого метода, в сравнении с другими, относятся малое время, необходимое для получения и обработки изображений, возможность получения полного объемного спектра данных о состоянии всей аорты и ее магистральных ветвей, неинвазивность и относительно широкая доступность. Однако, потенциал данного метода диагностики в исследовании мальперфузионного синдрома не раскрыт, к настоящему времени существует недостаточное количество работ, посвященных определению возможностей КТ в выявлении различных вариантов гипоперфузионных осложнений острого расслоения аорты и сопоставлению их со стенотическими изменениями сосудов.

Практически нет работ по сравнению клинических и КТ-данных. Таким образом, возможности рентгеновской компьютерной томографии при мальперфузии у пациентов с острым расслоением аорты требуют дальнейшего изучения.

Цель исследования

Улучшение диагностики мальперфузионного синдрома при остром расслоении аорты с помощью рентгеновской компьютерной томографии.

Задачи исследования

- 1. Разработать протокол КТ-исследования для оценки состояния стенок аорты, определения взаимоотношений истинного и ложного просветов при остром расслоении аорты, оценки вида и степени сужения ветвей аорты.
- 2. Усовершенствовать методику постпроцессинговой обработки КТ при остром расслоении аорты.
- 3. Сопоставить результаты КТ с клиническими данными для оценки развития мальперфузии у пациентов с острым расслоением аорты.
- 4. Оценить результаты хирургического лечения пациентов с выявленными стенозами ветвей аорты по данным КТ.

Научная новизна

Впервые разработан протокол КТ-сканирования больных с подозрением на Впервые разработан протокол КТ-сканирования больных с подозрением на расслоение восходящего отдела аорты с программой трехэтапной ЭКГ-синхронизации, позволяющую обеспечить качественную визуализацию пораженных сосудов и органов с минимально возможной в этих случаях лучевой нагрузкой.

Впервые полученные данные позволили выделить основные признаки мальперфузионного синдрома (как клинические, так и диагностические), которые влияют на выбор, объём и своевременность оперативного вмешательства.

Впервые применение усовершенствованной методики постпроцессинговой обработки КТ позволило детализировать характер расслоения, изменения просвета аорты, диаметр истинного и ложного просветов, степени стенозов сосудов и ишемических изменений органов, при этом оптимизировав уровень лучевой нагрузки, что, таким образом, позволяет добиться лучших результатов хирургического лечения.

Практическая значимость работы

Оптимизирован протокол проведения КТ-аортографии при остром расслоении аорты, разработан алгоритм выбора вида протокола исследования при различных клинических вариантах расслоения, как при первичном обследовании, так и при динамическом контроле, у пациентов с мальперфузионными осложнениями.

Выявлены наиболее частые варианты вовлечения магистральных ветвей в патологический процесс расслоения, а также их сочетание, что может позволить вести более направленный диагностический поиск мальперфузионных осложнений острого расслоения аорты.

Систематизированы виды стенозирующих изменений магистральных сосудов, выделены наиболее значимые, требующие вынесения их в заключение и обязательного срочного информирования врачей клинического профиля.

Основные положения, выносимые на защиту

- 1. Усовершенствованный протокол КТ-сканирования способствует оценке факторов расслоения аорты, таких как: характер расслоения, изменение просвета аорты, диаметр истинного и ложного просвета, степень стенозов
- 2. Выработанный протокол КТ-сканирования позволяет своевременно и корректно выполнять тот или иной вид оперативного вмешательства, а также прогнозировать, как вероятность развития мальперфузионного синдрома, так и результаты лечения.

Внедрение результатов исследования в практику

Результаты исследования внедрены в работу отделения рентгеновской компьютерной томографии, а также отделений кардиохирургии НИИ СП им.Н.В.

Склифосовского и активно применяются для первичной диагностики и при динамическом послеоперационном контроле пациентов с расслоением аорты.

Апробация работы

Основные результаты исследования доложены и обсуждены на Всероссийском национальном конгрессе лучевых диагностов и терапевтов «Радиология» 2019, 2020, 2021 гг., Москва; на конгрессе «Роль диагностического комплекса и рентгеноэндоваскулярных технологий на госпитальном этапе оказания скорой и неотложной медицинской помощи», объединенного с 19-й межрегиональной научно-практической конференцией с международным участием «Актуальные вопросы диагностической и интервенционной радиологии и хирургических технологий» 2019 год, г. Владикавказ; на конгрессе Российского общества рентгенологов и радиологов 2019, 2020 гг., Москва; на международной конференции «Горизонты современной ангиологии, сосудистой хирургии и флебологии» 2021 г., Казань; на конгрессе Европейского общества радиологов (ЕСR), г. Вена, Австрия в 2021, 2022 гг.

Апробация работы состоялась на совместном заседании научно-практической конференции кафедры лучевой диагностики института профессионального образования ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет), отдела лучевой диагностики и отдела неотложной кардиологии и сердечнососудистой хирургии ГБУЗ НИИ СП им Н.В. Склифосовского 27.03.2023г.

Публикации

По теме диссертационного исследования опубликовано 13 научных работ, в том числе 2 статьи в изданиях, рецензируемых Высшей аттестационной комиссией при Минобрнауки России, 1 патент (No2792768 Российская Федерация, МПК 51 A61B 6/02 (2006.01), (RU). - No2022113245/14(027578); заявл. 18.05.2022; опубл. 23.03.2023, Бюл. No 9), 10 тезисов.

Объем и структура диссертации

Диссертация состоит из введения, 3 глав, заключения, выводов, практических рекомендаций и списка литературы. Работа изложена на 140 страницах печатного текста и иллюстрирована 39 рисунками и 24 таблицами. Список литературы состоит из 140 источников, из них 28 отечественных и 112 зарубежных публикаций.

Содержание работы

Характеристика материала и метода исследования

Были проанализированы данные клинико-инструментального обследования 210 человек, поступавших на лечение в НИИ СП им. Н.В. Склифосовского с подозрением на острый разрыв аорты (ОРА) с 2017 по 2019 гг, разделенных на ретроспективную (140 человек) и проспективную (70 человек) группы. В основное исследование были включены 132 пациента: 74 - из ретроспективной группы, 58 - из проспективной.

Критерии включения клинического наблюдения:

- подтвержденное расслоение любого отдела аорты наличие разрыва интимальной оболочки аорты с формированием как минимум двух каналов тока крови;
- срок возникновения расслоения до 10 суток до момента поступления, то есть острое расслоение аорты;
- наличие КТ исследования на дооперационном этапе;
- надлежащее качество полученных КТ-изображений.

Критериями исключения клинического наблюдения являлись:

- исследования, выполненные с множеством артефактов любого рода, исключающих полноценную адекватную интерпретацию КТ-данных, в том числе по переходу расслоения на ветви аорты;
- неполный объем сканирования (захват только грудной/брюшной аорты, отсутствие аорто-подвздошного сегмента).

Для решения поставленных задач проведено разделение всех пострадавших, вошедших в основное исследование, на две группы: в первую были включены 50

пациентов с признаками мальперфузионных осложнений, во вторую 72 человека, у которых мальперфузия выявлена не была.

Средний возраст пациентов с диагностированным OPA составил 57 \pm 15,5 лет, вариации от 20 до 90 лет. Большинство из пациентов - мужчины (98 человек).

Все пациенты (как поступившие сразу на лечение в НИИ Склифосовского, так и переведенные из других лечебных учреждений) обратились в службу скорой помощи в первые сутки от начала заболевания. У всех включенных в исследование проводились сбор жалоб и анамнеза и физикальное обследование.

При поступлении жаловались на острую боль в груди 74 пациента; у 41 имела место общемозговая неврологическая симптоматика (головная боль, головокружение, помутнение сознания вплоть до обморока); 26 человек беспокоила боль в спине; 20 - болезненность и слабость в нижних конечностях; 17 пациентов поступили с болями в животе различной интенсивности; 10 жаловались на одышку; 2 – на болезненность в шее, верхних конечностях.

При анализе причин и факторов риска возникновения расслоения аорты отмечено, что системный атеросклероз был диагностирован (анамнестически, по повышению уровня общего холестерина и наличию кальцинированных бляшек в сосудах) у 79 человек (60%), синдром Марфана и другие диспластические нарушения – у 7 и 2 человек соответственно, артерииты различной этиологии – у 5 пациентов. С травматическим расслоением аорты было госпитализировано 4 человека (3%). Артериальная гипертензия была в анамнезе у 87 человек (66%).

Неврологическая симптоматика (помимо указанных ранее головной боли, головокружения и расстройств сознания) была выявлена у 12 человек в виде преходящих нарушений речи (3 наблюдения), чувствительности лица и конечностей (4), зрения (2), двигательных расстройств (8) - вплоть до параплегии (в одном случае). Вздутие живота на фоне его болезненности было отмечено в 4 случаях, нарушение мочеиспускания – в пяти. У большинства пациентов было сочетание двух и более клинических проявлений патологии.

Характеристика и исходы проведенного лечения пациентов

Из 132 человек были прооперированы 112, в 10 случаях оперативное вмешательство планировалось, но не было проведено, так как в шести из них летальный исход произошел в дооперационном периоде, в четырех - пациенты отказались от операции. Десять пациентов с расслоением ІІІ типа изначально велись консервативно по тактическим соображениям. Скончались после операции 13 пациентов (12% из общего числа прооперированных). Таким образом, общее количество летальных исходов составило 19 человек (14% от всех наблюдений).

У большинства пациентов (105 чел.) оперативное вмешательство было выполнено открытым доступом, в 7-ми случаях проведено закрытое вмешательство по методике TEVAR – на нисходящем отделе аорты.

Изолированное протезирование восходящего отдела аорты (ВОА) было выполнено 26 пациентам; протезирование восходящего отдела и частичное протезирование дуги аорты - 32 чел., из которых протезирование БЦА было у 20 пациентов, бедренно-бедренное шунтирование — у двоих; протезирование восходящего отдела и тотальное протезирование дуги аорты - у 40 человек, из них — в двух случаях — с захватом нисходящего отдела, протезирование БЦА продоводилось всем 40 больным; изолированное протезирование нисходящего отдела аорты перенесли 4 пациента; у одного пациента — в сочетании с протезированием брюшного отдела. Из этих операций протезирование аортального клапана и восходящего отдела аорты по Bentall выполнено 14 пациентам; клапаносохраняющая операция David - 8 пациентам.

Двум пациентам было проведено хирургическое вмешательство, без оперирования аорты (перикардиостомия, пластика дефекта межпредсердной перегородки).

Статистические методы обработки результатов исследования

Для разработки КТ-семиотики мальперфузионных изменений при остром расслоении аорты была создана база данных в Microsoft Excel.

В базе данных отражены данные КТ-исследований, а также вся необходимая для сопоставления и анализа информация о клиническом состоянии пациента, выборе оперативного вмешательства, исхода заболевания. База данных состояла из основных таблиц и вспомогательных, связанных между собой через ФИО (фамилия и инициалы пациента) и номер истории болезни. Дублирование информации в таблицах не допускалось, что позволяло повысить производительность.

Статистический метод обработки данных включал сводку и группировку данных, расчет обобщающих показателей, корреляционно-регрессионный анализ. Статистическую обработку результатов выполняли с помощью программы IBM SPSS Statistics версия 19 (IBM Corp., США) и с использованием среды для статистических вычислений R 4.1.3 (Foundation for Statistical Computing, Вена, Австрия). Проводилось определение чувствительности, специфичности, общей диагностической точности метода на основании сопоставления истинно- и ложноположительных и истинно- и ложноотрицательных случаев согласно методике контролируемых клинических испытаний В.В. Двойрина [1985 г.]. Все количественные параметры (результаты измерений и вычислений) были проверены на соответствие нормальности распределения данных с применением критерия Колмогорова — Смирнова (нормальным считалось распределение при р > 0,05). При нормальном распределении признака полученные данные представлены в виде средней величины ± стандартное отклонение, при ненормальном распределении признака, как медиана (25–75 процентили).

Для сравнения групп по исследуемым признакам использовали критерии Стьюдента (для нормального распределения). Для выявления различия частот в исследуемых группах использовался критерий ф*- коэффициент (мера ассоциации бинарных признаков), а также точный критерий Фишера - для сопоставления двух групп (малых выборок) по частоте встречаемости признака. При анализе таблиц сопряженности, содержащих сведения о частоте исходов в зависимости от наличия фактора риска, использовался критерий хи-квадрат (χ2) Пирсона в том случае, если были соблюдены основные условия о независимости наблюдений и групп, а ожидаемое число наблюдений в любой из ячеек было не менее 5 (или 10) для четырехпольных таблиц (если это условие не соблюдалось, применялась поправка Йейтса). Для оценки силы взаимосвязи между качественными переменными были использованы либо коэффициент ф, либо коэффициент сопряженности Пирсона С и шкала оценки согласно рекомендациям Rea & Parker.

Результаты исследования

Оптимизация протокола сканирования

При ретроспективном анализе исследований пациентов, поступавших с подозрением на острое расслоение аорты (140 человек), были выделены следующие варианты проведения сканирования: с наличием нативного исследования и с его отсутствием, с наличием ЭКГ-синхронизации и с ее отсутствием.

Нативная фаза сканирования отсутствовала у 21 пациента из ретроспективной группы (15%). Это не повлекло ошибок в выявлении расслоения аорты, однако нередко осложняло адекватную интерпретацию полученных данных, например: дифференциальная диагностика пенетрирующей бляшки и кальциноза, интрамуральной гематомы и гигантоклеточного артериита. Нативная фаза была необходима при планировании общего объема исследования, а также для расчета градиента накопления контрастного препарата органами - для подтверждения наличия мальперфузионных осложнений ишемического характера.

У 16 человек с подозрением на расслоение грудного отдела аорты из ретроспективной группы ЭКГ-синхронизация не проводилась, что затруднило

интерпретацию полученных данных вплоть до диагностических ошибок. В четырех случаях были даны ложноположительные заключения вследствие наличия линейных артефактов на уровне корня аорты и синотубулярного перехода, при этом еще у 3 из 16 пациентов не удалось достоверно определить уровень проксимального окна фенестрации. Еще в одном случае был сделан ложноотрицательный вывод об отсутствии расслоения восходящего отдела аорты, так как разрыв интимы был расценен как пульсационный артефакт. Таким образом, точность выявления расслоения аорты в ретроспективной группе составила 96,4% (4 ложноположительных и один ложноотрицательный результаты из 140 исследований). В связи с этим, ЭКГ-синхронизация была введена как необходимый этап протокола для всех пациентов с подозрением на расслоение восходящего отдела аорты.

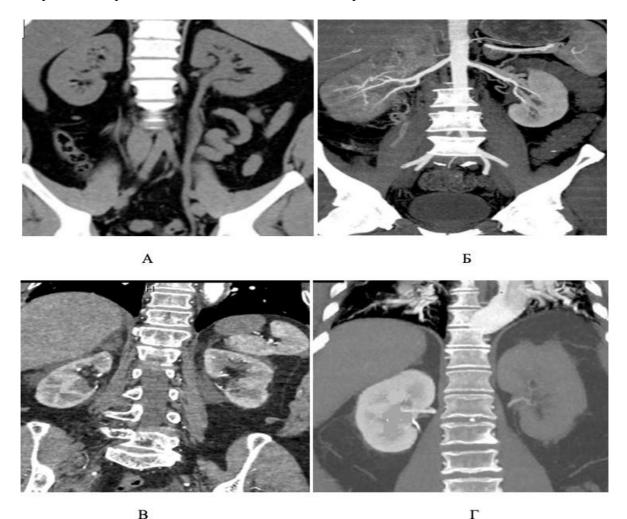
С целью уменьшения лучевой нагрузки было принято решение использовать трехэтапный протокол, сокращающий зону ЭКГ-синхронизации. Согласно ему были выделены три последовательные зоны сканирования:

- 1 зона голова-шея сканировалась в обычном спиральном режиме,
- 2 зона корня и восходящей аорты сканировалась с кардиосинхронизацией,
- 3 зона брюшной аорты и подвздошно-бедренный сегмент сканировалась в обычном спиральном режиме.

Этот вариант протокола позволил на одной задержке дыхания и на одном введении контрастного препарата получить визуализацию всей аорты, при этом существенно снизив лучевую нагрузку на больного с сохранением высокого качества получаемых изображений.

В проспективной группе (70 человек) при адекватном использовании ЭКГсинхронизации не было ни одного неверного КТ-заключения относительно расслоения аорты из-за артефактов движения; лишь в 1 случае было дано ложноположительное заключение вследствие интерпретации увеличенных, дегенеративно изменённых верхних перикардиальных карманов, имитировавших двухконтурность просвета аорты, как КТпризнак острого расслоения типа А. В проспективной группе точность выявления расслоения аорты составила 98,6%.

Точность выявления расслоения аорты в общей группе составила 97,1%, чувствительность – 99,3%, специфичность – 89,4%.

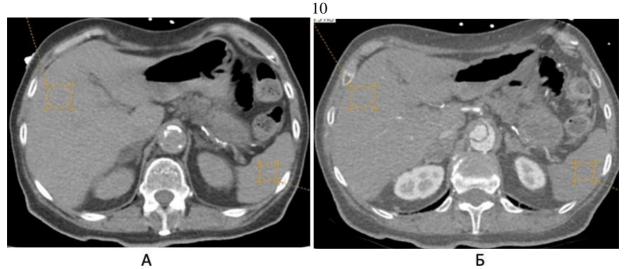

Следующим пунктом оптимизации протокола сканирования был анализ данных с целью определения оптимального времени задержки начала собственно сканирования от момента внутривенного введения контрастного вещества для получения адекватного изображения всей аорты, ее ветвей и начальных признаков контрастирования паренхиматозных органов (рисунок 1).

При начале сканирования на 35-40 секунде от момента введения контрастного препарата (25 наблюдений) отмечалась и хорошая контрастность аорты и сосудов, и при этом получали хорошее накопление с кортико-медуллярной дифференцировкой в почках, активное контрастирование селезенки «пятнистого» характера в большинстве случаев, а также определялся градиент накопления паренхимой печени 10-17 ед.Н за счет ее артериального кровоснабжения (рисунок 1В). При верифицированных мальперфузионных осложнениях почек отмечалось снижение контрастирования на этих же сроках задержки, что свидетельствовало о наличии ишемии в них, в то время как низкий градиент контрастрования на ранней артериальной фазе не мог быть достоверным свидетельством развития в ней ишемических изменений (рисунок 1Г). Таким образом, был сделан вывод о целесообразности проведения поздней артериальной фазы контрастирования у пациентов с острым расслоением аорты.

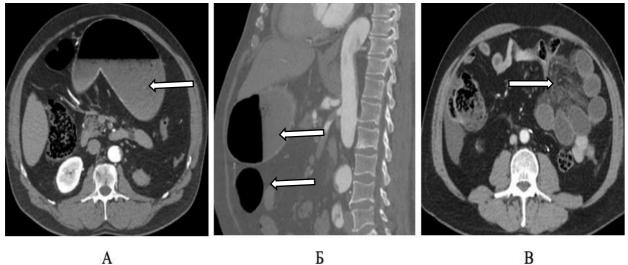
На основании полученных данных были сформулированы основные параметры оптимизированного протокола сканирования, выполненного у всех пациентов, вошедших в проспективное исследование:

- проведение нативной фазы у всех пациентов;

- запуск сканирования через 30-40 секунд после начала внутривенного введения контрастного вещества (поздняя артериальная фаза);
- ЭКГ-синхронизация по трехфазному комбинированному протоколу пациентов с подозрением на расслоение восходящего отдела аорты.


Рисунок 1 - КТ аорты, фронтальные срезы: исследование в различные фазы сканирования.

A - нативная фаза; B - ранняя артериальная фаза на 20-й секунде; B - поздняя артериальная фаза, на 35-й секунде; Γ - поздняя артериальная фаза сканирования (на 35-40-й секунде) у пациента с ишемическими измненеиями левой почки.


3.2 Результаты КТ-диагностики ишемии внутренних органов

В первой группе пациентов с верифицированной мальперфузией прямые признаки ишемии паренхиматозных органов на КТ в виде снижения накопления контрастного препарата в позднюю артериальную фазу отмечены у 10 человек: ишемия почки у 9 пациентов (рис. 2A и Γ), печени и селезенки - у одного (рисунок 2).

Ишемия тонкой и толстой кишки была выявлена на КТ в виде косвенных признаков (рисунок 3) – гастростаза (10 наблюдений), расширения петель (n=8), наличия уровней жидкости (n=3), асцита, отека подслизистой основы кишки с признаками накопления контрастного вещества слизистой оболочкой (n=2), утолщения стенок кишки (n=2). Прямых признаков, связанных с некрозом стенки кишки, не получено в связи с отсутствием контрастирования в равновесную и отсроченную стадии.

Рисунок 2 – КТ аорты: А - аксиальный срез, нативная фаза; Б – аксиальный срез, поздняя артериальная фаза, на 35-й секунде КТ-признаки ишемии печени и селезенки в виде отсутствия накопления контрастного вещества паренхимой органов.

Рисунок 3 - КТ аортография: А- аксиальный срез, гастростаз; Б — сагиттальная реконструкция, расширение петель кишки, B — аксиальный срез, отек и инфильтроация брыжейки. Косвенные КТ-признаки ишемии кишки у пациентов с острым расслоением аорты.

В условиях приемного отделения лишь одному пациенту, поступившему с клиникой ОНМК, было выполнено КТ головного мозга, выявлены ишемические изменения в его веществе в виде зон пониженной плотности (рисунок 4).

Во второй группе пациентов по результатам КТ исследования ни в одном наблюдении данных за ишемию внутренних органов не получено.

Результаты **КТ**- диагностики острого расслоения аорты и состояния истинного и ложного просветов

У 132 пациентов, вошедших в основное исследование, были выявлены следующие характерные КТ-признаки расслоения аорты, как прямые, так и косвенные, изолированные, и в различных сочетаниях (рисунок 5):

- смещение кальцинат в просвет аорты при нативном исследовании (рисунок 5A),
- формирование двух и более просветов (истинный и ложный, в одном случае три ложных просвета) с их различной степенью контрастирования (рисунок 5Б),
- визуализация отслоения интимы определение окна проксимальной фенестрации (рисунок 5B).

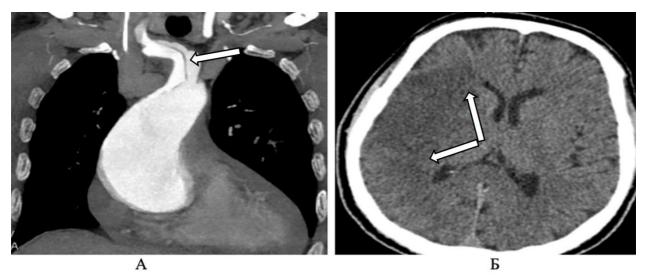


Рисунок 4 - КТ-признаки осложнений расслоения аорты:

- А- КТ- аортография, фронтальная реконструкция, артериальная фаза. Перехода расслоения на плечеголовной ствол с формированием его статического стеноза
- Б- КТ головного мозга, аксиальный срез, нативная фаза сканирования. Ишемические изменениия правого полушария головного мозга.

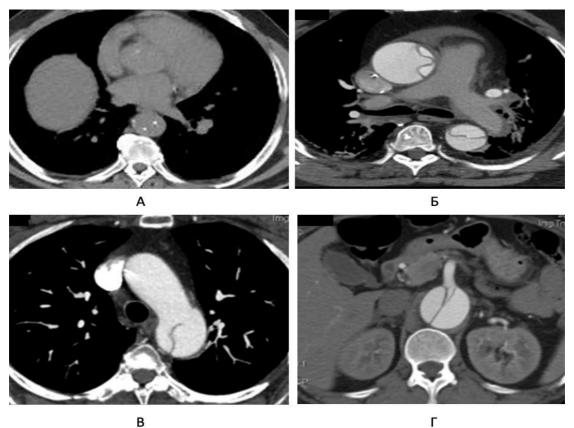


Рисунок 5 - КТ аорты, аксиальные срезы: основные признаки расслоения аорты.

- А нативная фаза, смещение кальцината в просвет дуги аорты (расслоение типа А по Стэнфорду);
- Б артериальная фаза, формирование истинного и ложного просвета при расслоении аорты (расслоение типа А по Стэнфорду);
- В артериальная фаза, визуализация отслоенной интимы в просвете аорты (расслоение типа В по Стэнфорду),
- Г артериальная фаза, многоканальное расслоение (расслоение типа А по Стэнфорду).

Проксимальное окно фенестрации определялось в виде участка отслоенной интимы у 94 пациентов (71%) в восходящем отделе, на 1,2-2,7 мм выше синотубулярного перехода, в 4 случаях (3%) – в поперечном отделе дуги аорты, дистальнее отхождения брахиоцефального ствола, в 34-х наблюдениях (26%) – в нисходящем отделе аорты, дистальнее отхождения левой подключичной артерии на 5-16 мм. В 74% случаев (у 98 пациентов) именно с уровня фенестрации визуализировался ложный просвет, однако у 34 пациентов с наличием дефекта интимы в восходящем отделе и дуге два просвета формировались проксимальнее уровня окна фенестрации, очевидно, за счет ретроградного потока крови по ложному просвету.

При анализе распределения по типам расслоения было отмечено, что поражение типа A по Stanford определялось у 98 пациентов, типа B-y 34.

Соответственно, поражение типа I по DeBakey имело место у 78 пациентов, II типа – у 20 пациентов, типа III – у 34.

Мальперфузионные осложнения развивались практически с одинаковой частотой при расслоениях обоих типов по Stanford— у 38 пациентов из 98 при типе А (38,8%) и у 12 пациентов из 34 при типе В (35,3%), разница недостоверна, p=0,718.

Истинный просвет в большинстве случаев (121 - 92%) имел меньший диаметр, чем диаметр ложного просвета (при оценке средних значений). Практически равные размеры каналов отмечены в 11 случаях (8%).

Был проведен анализ взаимоотношений истинного и ложного просветов на разных уровнях измерений в группах пациентов с мальперфузионными осложнениями (группа 1) и без них (группа 2). Из анализа были исключены пациенты с ІІ типом расслоения, поэтому число наблюдений в группах составило, соответственно, 48 и 64 (таблица 1).

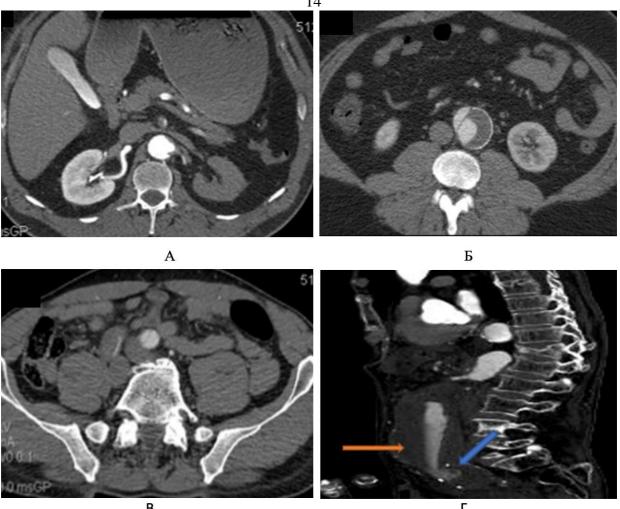
Таблица 1. Степень компрессии истинного просвета *(%) в группах пациентов с мальперфузионными осложнениями и без них.

Локализация стенозов	Группа 1 (n=48)		Группа 2 (n=64)		p	
	диаметр	площадь среза	диаметр	площадь среза	диаметр	площадь среза
1 - нисходящий отдел ГА	66±9,	58±12,1	53±8, 9	47±16,	p≤0,0 1	p≤0,0 5
2 – уровень аортального отверстия диафрагмы	78±9, 4	71±10,6	64±5, 4	60±13,	p≤0,0 1	p≤0,0 5
3 – уровень отхождения почечных артерий	83±7, 8	79±9,5	70±6, 5	69±16, 1	p≤0,0 1	p≤0,0 5
4 - уровень бифуркации аорты	80±8, 6	75±14,3	72±7, 1	68±12,	p≤0,0	p≤0,0 5

^{*}Степень компрессии рассчитывалась как отношение разности общего диаметра/площади среза аорты и диаметра/площади истинного просвета к общему диаметру/площади среза аорты, выраженное в процентах.

Как видно из приведенных в таблице 1 данных, в первой группе степень компрессии ИП, измеренная как по диаметру, так и по площади среза, была достоверно большей на всех уровнях измерений, хотя из-за значительной вариабельности значений площади среза уровень статистической значимости в этих случаях был ниже (р≤0,05). Наибольшая величина компрессии в группе 1 была определена на уровне отхождения почечных артерий, в группе 2 − на уровне бифуркации аорты. Количество пациентов, имеющих стеноз истинного просвета более, чем 75% хоть на одном уровне, в первой группе составило 46 пациентов из 48, во втором − 31 из 64. Наличие взаимосвязи определили с помощью критерия хи-квадрат, его значение при анализе четырехпольной таблицы составило 26,68, нормализованный коэффициент сопряженности Пирсона − 0,64, что соответствует наличию сильной связи между стенозом истинного просвета более, чем на 75% и развитие мальперфузионных осложнений.

Одинаковая степень контрастирования истинного и ложного каналов (рисунок 6A) была отмечена в 82 случаях (62%), более низкая степень контрастирования ложного хода (рисунок 6Б), свидетельствующая о его частичном или полном тромбировании, - в 36 наблюдениях (27,2%). У 13 пациентов (10%) ложный просвет имел более высокую интенсивность контрастирования в артериальную фазу (рисунок 6B), что являлось признаком низкой скорости кровотока по истинному просвету. В одном случае (0,8%) признаки частичного тромбоза были отмечены, как в ложном, так и в истинном просветах (рисунок 6 Γ).


Положение ложного хода также было достаточно вариабельным и зависело от отдела аорты. Так, на уровне восходящей аорты в большинстве случаев (88 из 98 - 90%) он располагался по правому и переднему контуру, в остальных 10 случаях – по правому и заднему контуру. В нисходящей грудной аорте более часто ложный просвет проходил слева и сзади (77 из 112 случаев с вовлечением нисходящего отдела – 69%), реже – справа и частично кзади (26 - 23%). В 9 случаях (8%) ложный просвет в нисходящем отделе ГА располагался по левому и частично переднему контуру. В брюшной аорте (112 наблюдений) ложный просвет находился слева и частично кзади у 79 пациентов (70,5%), справа и кзади – у 21 (18,8%), по передней стенке – у 9 (8%). В трех случаях (2,7%) ложный просвет располагался циркулярно вокруг истинного.

Переход расслоения на магистральные ветви аорты и варианты их вовлечения в патологический процесс

Общее количество магистральных ветвей аорты, которые были оценены в рамках проведенного исследования, составило 1452 артерии — по 11 у каждого пациента (коронарные, брахиоцефальные, чревный ствол, верхняя брыжеечная, почечные и общие подвздошные артерии). К признакам вовлечения сосуда в патологический процесс были отнесены следующие:

- непосредственно переход расслоения на сосуд (как со снижением, так и с сохранением кровотока по нему), либо в виде наличия выступающего в просвет фрагмента стенки артерии когда расслоение ограничивается уровнем устья сосуда, либо ее двухконтурность, связанная с формированием истинного и ложного просветов артерии;
- стеноз сосуда, связанный с пролабированием расширенного ложного просвета в просвет магистральной ветви;
- тромбоз магистральной ветви без явных признаков перехода расслоения на стенку этой артерии.
- У 82 пациентов (62,1%) были выявлены и впоследствии верифицированы вышеописанные изменения магистральных ветвей аорты с поражением одной или более артерий: при поражении типа A у 61 пациентов из 98 (238 сосудов), типа В у 21 из 34 (51 сосуд). Таким образом, частота случаев вовлечения магистральных сосудов в патологический процесс при остром расслоении аорты составила 62% (по количеству пациентов), причем была одинаковой при типе A и типе B по Stanford.

Рисунок 6 - КТ аорты с признаки частичного тромбирования истинного и ложного просветов при остром расслоении аорты.

A — аксиальный срез, артериальная фаза сканирования, одинаковая степень контрастирования истинного и ложного просветов; B — аксиальный срез, артериальная фаза сканирования, частичный тромбоз ложного просвета; B — аксиальный срез, артериальная фаза сканирования, частичный тромбоз истинного просвета; Γ — сагитальный срез, артериальная фаза сканирования (оранжевая стрелка - признаки частичного тромбоза в истинном просвете, синяя стрелка- признаки частичного тромбоза в ложном просвете).

Не все случаи патологических изменений сосудов сопровождались их стенозированием – всего стеноз был определен в 244 сосудах (16,8% от всего количества оцененных сосудов). Классификации стенозов по степени их выраженности очень вариабельны, поэтому в нашей работе мы остановились на выделении группы стенозов свыше 50% как гемодинамически значимых. Такие стенозы (включая окклюзионные изменения сосудов) были выявлены в 143 артериях.

При оценке 12 артерий из 1452 определены ложноположительные результаты о наличии в них расслоения, не подтвердившиеся при верификации, в двух случаях были определены ложноотрицательные результаты — не были выявлены изменения в коронарных артериях (ретроспективная группа, где не проводилась ЭКГ-синхронизация).

Таким образом, при анализе точности метода КТ в выявлении перехода расслоения на магистральные ветви были получены следующие данные:

ложноотрицательные результаты - 2;

ложноположительные результаты - 12;

истинноположительные результаты - 287; истинноотрицательные результаты - 1151.

Чувствительность метода КТ в выявлении перехода расслоения на магистральные ветви аорты составила 99,3%, специфичность – 98,97% и точность 99,0%.

После проведения верификации окончательное количество вовлеченных в патологический процесс ветвей аорты составило 289 (19,9% от числа всех оцененных артерий). Анализ состояния ветвей аорты по их группам показал, что во всех группах артерий, за исключением коронарных, частота встречаемости патологических изменений была примерно одинакова и колебалась от 21% до 27% (таблица 2).

<u>Коронарные артерии:</u> переход расслоения был сразу выявлен в 3-х случаях, причем с формированием гемодинамически значимого статического стеноза в двух из них. Еще 2 случая вовлечения коронарных артерий в патологический процесс, без признаков их стенозирования, были определены после верификации — всего 5 случаев, со статическими стенозами в двух из них.

Таблица 2 - Частота встречаемости патологических изменений ветвей аорты при ее остром

расслоении

Количеств	Коронарные	Брахиоцефальные	Висцеральные	Общие подвздошные
артериц	артерии	ветви	ветви	артерии
Количеств	5 (1,9%)	85 (21,5%)	128 (24,2%)	71 (26,9%)
пораженнь				
артерий				
(n=289)				
Количеств	259 (98,1%)	311 (78,5%)	400 (75,8%)	193 (73,1%)
интактных				
артерий				
(n=1163)				
Всего	264 (100%)	396 (100%)	528 (100%)	264 (100%)
(n=1452)				

<u>Брахицефальные артерии</u> (БЦА): при оценке артерий, отходящих от дуги, было проанализировано состояние 396 брахицефальных артерий. У 46 пациентов в патологический процесс были вовлечено 85 сосудов: плечеголовной ствол - 33 случая, левая общая сонная артерия - 30 случаев, левая подключичная артерия - 22 случая. Из них 81 сосуд был стенозирован, в 4 случаях был отмечен переход расслоения на БЦА без признаков сужения их просвета. Статический стеноз визуализирован в 74 случаях, что составило 87% от общего числа пораженных БЦА (85). Динамических стенозов не было, но в 7 случаях диагностирована полная окклюзия сосудов, причем достоверно невозможно было определить причину ее возникновения — это статический стеноз с полной компрессией истинного просвета или тромбоз сосуда вследствие нарушения гемодинамики. Значимые стенозы (более 50%) были выявлены в 44 из 85 пораженных артерий.

У 29 пациентов отмечено одновременное вовлечение в патологический процесс нескольких брахиоцефальных артерий: у 17 человек – по 2 артерии, у 12 – все три.

В группе пациентов с мальперфузией брахиоцефальные артерии вовлекались в патологический процесс у 28 пациентов из 50, соответственно - 49 из 150 брахиоцефальных артерий (32,7%), при этом во всех случаях имели место стенозы (42) либо полные окклюзии сосудов (7 наблюдений). В группе без мальперфузионных осложнений брахиоцефальные артерии были поражены у 18 пациентов из 82, соответственно – 36 из 246 сосудов (14,6%). Стенозы в этой группе были выявлены в 32 артериях, окклюзионных изменений артерий не было. Все 4 случая перехода расслоения без формирования стеноза были определены только в этой группе. Таким образом, в

группе с мальперфузионными нарушениями достоверно чаще диагностированы поражения брахиоцефальных артерий, в том числе - с формированием статических стенозов и окклюзионных поражений.

<u>При оценке висцеральных артерий</u> было проанализировано состояние 528 сосудов. В группе пациентов с мальперфузией висцеральные артерии были вовлечены в патологический процесс у 42 пациентов из 50, соответственно - 95 из 200 висцеральных ветвей (47,5%). В группе без мальперфузионных осложнений висцеральные ветви были поражены у 20 пациентов из 82, соответственно – 35 из 328 сосудов (10,7%). Таким образом, у 62 человек в патологический процесс было вовлечено всего 130 висцеральных артерий.

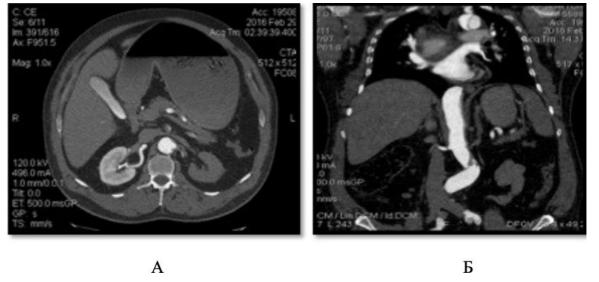
<u>Чревный ствол</u>: поражение этого сосуда установлено у 36 пациентов – 26 в первой группе и 10 во второй, что является достоверной разницей. Среди вариантов проявления патологических изменений преобладал статический стеноз – 15 случаев, 8 в первой группе и 7 – во второй. Динамические стенозы в виде пролабирования расширенного ложного просвета в просвет чревного ствола определены в 9 случаях, 8 из них – в первой группе. Другой вариант динамического стеноза в виде выступающего в просвет фрагмента стенки чревного ствола, перекрывающего просвет по клапанному механизму, встретился у 6 человек из 1 группы, во второй группе таких вариантов не отмечено. В 6 случаях (4 – из 1 группы, 2 – из группы 2) расслоение перешло только на устье ствола, без признаков дальнейшего нарушения кровотока по сосуду. В группе с мальперфузионными нарушениями достоверно чаще встретилось поражение чревного ствола со всеми вышеописанными вариантами изменения его стенки, с формированием динамических и статических стенозов, в том числе – гемодинамически значимых, свыше 50% (14 из 22 случаев стенозов в 1 группе).

Верхняя брыжеечная артерия (ВБА): анализ состояния ВБА показал более частое ее вовлечение в патологический процесс в первой группе — 33 наблюдения, чем во второй всего 4. Среди изменений стенки и просвета сосуда преобладал статический стеноз - у 23 пациентов, из них у 21 из первой группы. Динамические стенозы в виде пролабирования расширенного ложного просвета в просвет чревного ствола отмечались в 7 случаях, 6 из них — в первой группе. Динамический стеноз в виде выступающего в просвет фрагмента стенки артерии, перекрывающего просвет по клапанному механизму, был определен у 4 человек из 1 группы, во второй группе такие варианты отсутствовали. В первой группе диагностирован один случай окклюзионного поражения без четкого понимания его генеза (статический стеноз или мезентериальный тромбоз). Всего в 2-х случаях (по одному в каждой группе) расслоение перешло только на устье артерии без признаков дальнейшего нарушения кровотока по ней.

Почечные артерии были вовлечены в патологический процесс у 55 пациентов, достоверно чаще в первой группе - 36 наблюдений, чем во второй - 19 случаев. Всего было оценено 264 артерии, одномоментного повреждения обеих почечных артерий не Среди вариантов проявления патологических изменений неокклюзирующий было. статический стеноз был в 17 случаях, 9 в первой группе (все более 50%) и 8 – во второй (все – менее 50%). Динамические стенозы в виде пролабирования расширенного ложного просвета в просвет почечной артерии определены в 5 случаях, 4 из них – в первой группе. Другой вариант динамического стеноза, в виде выступающего в просвет фрагмента стенки расслоенной почечной артерии, перекрывающего просвет по клапанному механизму, встретился у 4 человек – по 2 из каждой группы. Полная окклюзия сосудов была выявлена только в 10 наблюдениях у пациентов 1 группы, 8 - на фоне статического стеноза. В 2-х случаях достоверно определить причину ее возникновения не удалось – статический ли это стеноз с полной компрессией истинного просвета или тромбоз сосуда вследствие нарушения гемодинамики. В 19 случаях (11 – из 1 группы, 8 – из группы 2) расслоение перешло только на устье почечной артерии, без признаков дальнейшего нарушения кровотока по ней.

Подвздошные артерии: всего проанализировано состояние 264 артерий, изменения просвета и стенки были выявлены в 71 артерии (26,9%) у 59 человек – в 12 случаях расслоение переходило на обе общие подвздошные артерии. В первой группе с мальперфузионным синдромом изменения были выявлены в 40 артериях, во второй – в 31 артерии. Расчет критерия Фишера подтверждил достоверность различий по встречаемости патологических изменений общих подвздошных артерий у пациентов первой и второй групп. В группе больных с патологией общих подвздошных артерий наиболее часто встречались статические стенозы – 32 в первой группе и 21 – во второй, причем 26 стенозов в первой группе были гемодинамически значимыми, все стенозы второй группы менее 50%. Один динамический стеноз был выявлен в первой группе, степень его компрессии была более 50%. Полная окклюзия на фоне статического стеноза отмечена в 6 случаях в первой группе. Во второй группе такие изменения отсутствовали. Таким образом, в первой группе с верифицированными мальперфузионными нарушениями достоверно чаще выявлялись стенозирующие изменения всех ветвей аорты. Проведенный корреляции с использованием критерия хи-квадрат И коэффициента сопряженности показал сильной связи (C=0.58)между наличием наличие гемодинамически значимых стенозов (вплоть до полной окклюзии сосудов) и развитием верифицированных мальперфузионных осложнений. Полученные ланные возможность сделать вывод о достаточной информативности стандартной КТаортографии с целью выявления мальперфузии органов и тканей. Выполнение КТ методики с использованием венозной или отсроченной фазы контрастирования с целью выявления ишемических изменений в органе в этом случае нецелесообразно, поскольку удлиняет время исследования и увеличивает лучевую нагрузку, не привнося значимой информации.

Анализируя частоту наличия стенозов в группе в целом, можно отметить, что наиболее часто на КТ (в абсолютных величинах) преобладали стенозы БЦА (85 случаев), наиболее редко — стенозы чревного ствола (30 артерий), в то время как процент выявленных стенозов, относительно общего количества исследованных артерий, был максимальным у больных с поражением верхней брыжеечной артерии (26,5%), минимальным (13,6%) — в почечных артериях (таблица 3).


Таблица 3 - Частота встречаемости стенозов в различных ветвях аорты при OPA (по данным KT).

Локализация стенозов	Количество	Общее	% стенозов от
	вовлеченных	количество	количества
	артерий	стенозов	вовлеченных
			сосудов
Коронарные артерии (n=264)	5 (1,9%)*	2 (0,8%)*	40%
БЦА (n=396)	85 (21,5%)*	81 (20,5%)*	95%
Чревный ствол (n=132)	36 (27,3%)*	30 (22,7%)*	83%
BEA (n=132)	37 (28%)*	35 (26,5%)*	95%
Почечные артерии (n=264)	55 (20,8%)*	36 (13,6%)*	65%
Подвздошные артерии (n=264)	71 (26,9%)*	60 (22,7%)*	84,5%

^{*}указан процент от общего количества (n) исследованных артерий соответствующего бассейна

Как представлено в таблице 3, процент стенозированных артерий относительно количества патологически измененных сосудов был одинаково максимально высоким (95%) в группах БЦА и ВБА. Из этого следует, что по данным КТ наиболее часто в патологический процесс с образованием стенозов была вовлечена верхняя брыжеечная артерия, на втором месте - чревный ствол и подвздошные артерии. Несмотря на максимальные абсолютные значения количества измененных БЦА и высокий процент их

стенозирования, с учетом большого количества этих артерий, в процентном отношении количество стенозов БЦА было ниже, чем аналогичный показатель ВБА, хотя статистически различия были незначимы ($\phi^*=1,4$; p>0,05). Достоверно ниже ($\phi^*=2,4$; p<0,01) была частота стенозов почечных артерий на фоне относительно небольшого количества их патологических изменений. Однако, при оценке частоты наличия стенозов более 50% (таблица 4) отмечено, что более 66% из стенозов почечных артерий были гемодинамически значимыми и приводили к серьезным нарушениям кровоснабжения почек (рисунок 7).

Рисунок 7 - КТ- аортография: аксиальный срез, артериальная фаза сканирования (A); фронтальная реконструкция, артериальная фаза сканирования (Б). Динамический стеноз левой почечной артерии с формированием ее окклюзии и тотальной ишемии левой почки.

Статические стенозы во всех группах ветвей аорты выявлялись достоверно чаще - p<0,01% (таблица 4). Это может быть обусловлено как большей частотой их возникновения, так и определенными сложностями в выявлении стенозов другого типа. Визуализация динамических стенозов может быть затруднена в тех случаях, когда речь идет о колеблющейся створке отслоенной интимы. При этом следует обращать внимание на интенсивность кровотока по измененной артерии и признаках мальперфузии органов соответствующего бассейна.

Наибольшее количество гемодинамически значимых стенозов (в процентном отношении) было выявлено в коронарных артериях, однако их число слишком мало для каких-либо статистических оценок. Достоверно высокий процент развития стенозов свыше 50% был отмечен в верхней брыжеечной артерии (74,3% от всех стенозов ВБА) и в почечных артериях (66,7% от всех стенозов почечных артерий), что было указано выше.

Результаты статистического анализа возможной связи между гемодинамически значимыми стенозами магистральных ветвей аорты, выявленными на КТ, и летальными исходами - с использованием таблиц сопряженности и критерия хи-квадрат Пирсона приведены в таблице 5.

Учитывая тот факт, что одновременное вовлечение в патологический процесс двух и более групп ветвей аорты, определенное у 56 пациентов, также могло оказывать влияние на развитие мальперфузионных осложнений и обусловливать тяжесть состояния пациента, был проведен анализ частоты встречаемости таких состояний в первой и второй группах пациентов.

Таблица 4 - Частота выявления разных видов стеноза в разных группах артерий.

Локализация	Общее	Статически	Динамическ	Окклюзия	Стеноз
стенозов	количество	е стенозы	ий стеноз *	, фон	более
	стенозов			неясен	50%**
Коронарные артерии	2	2	0	0	2 (100%)
(n=264)					
БЦА (n=396)	81	74	0/0	7	44
					(54,3%)
Чревный ствол	30	15	9/6	0	14
(n=132)					(46,7%)
BEA (n=132)	35	23	7/4	1	26
					(74,3%)
Почечные артерии	36	25	5/4	2	24
(n=264)					(66,7%)
Подвздошные	60	59	1/0	0	33 (55%)
артерии (n=264)					
ВСЕГО	244	198	36	10	143(58,6%
)

^{*}с пролабированием ложного просвета в истинный/с колеблющейся створкой отслоенной интимы **процент представлен от общего числа стенозов

Таблица 5 - Анализ корреляции между наличием стенозов магистральных сосудов, выявленных КТ методом, и летальными исходами пациентов с OPA.

Локализация	Критерий	Мин.	Уровень	Коэффициент	Сила
стенозов	χ2	значение	значимости	сопряженности	связи*
БЦА	5,91	4,00	0,02	0,21	средняя
Чревный ствол	0,09	2,59	0,77	0,03	нет
ВБА	1,98	3,74	0,16	0,12	слабая
Почечные	2,68	3,45	0,015	0,14	слабая
артерии					
Подвздошные	5,92	4,75	0,015	0,21	средняя
артерии					
Все стенозы в	16,63	7,05	<0,001	0,335	средняя
целом					

^{*} интерпретация полученных значений статистических критериев согласно рекомендациям Rea&Parker.

В первой группе у всех 50 человек было выявлено вовлечение ветвей аорты в патологический процесс, во второй группе - у 47 пациентов не было признаков поражения артерий, связанных с острым расслоением аорты. Единственным сочетанием поражения разных ветвей, достоверно чаще определявшимся в группе мальперфузионных нарушений, было одновременное поражение БЦА, висцеральных и подвздошных артерий, все остальные сочетания не имели значимых различий в плане формирования мальперфузионных осложнений.

Это же сочетание наиболее часто встречалось (26 случаев) и составило 46,4% от всех комбинаций поражения ветвей аорты при OPA. Также достаточно часто отмечено одновременное вовлечение в патологический процесс ветвей висцеральной группы и подвздошных артерий (20 случаев – 35,7% от всех сочетаний).

Сочетание перехода расслоения на магистральные ветви аорты с клиническими признаками

С жалобами на острую боль в груди поступили 74 человека из 132 (56%): 43 человека с I типом расслоения по DeBakey, 15 – со II типом и 16 – с III типом расслоения; соответственно 58 человек с расслоением типа A и 16 – с B типом расслоения по Stanford.

Расчет критерия Фишера показал, что относительная частота жалоб на боль в груди значимо не отличалась при типах расслоения A и B по Stanford (ϕ *AB = 1,21, p>0,1 - различия не достоверны) и I и III типов по DeBakey (ϕ *1:3 = 0,80, p>0,1). Однако, при изолированном расслоении восходящего отдела аорты боль в груди возникает чаще, хотя и с невысоким уровнем статистической достоверности (ϕ *1:2 = 1,68, p=0,097; ϕ *2:3 = 2,07; p=0,053). Переход расслоения на коронарные артерии в наших наблюдениях был выявлен только у 3 человек, имевших эти жалобы, поэтому суждение о том, что боль в груди является специфическим признаком вовлечения коронарных артерий, не нашло подтверждения. Таким образом, в нашем исследовании боль в груди была достаточно частым проявлением всех типов OPA, несколько более характерным для расслоения восходящего отдела аорты, но не высокоспецифичным признаком какого-либо конкретного вида расслоения или перехода его на коронарные ветви.

На острую боль в спине при поступлении жаловались 26 пациентов из 132 (19,6%): 14 - с I типом расслоения по DeBakey, один — со II типом и 11 — с III типом расслоения; соответственно 15 человек с расслоением типа A и 11 — с В типом расслоения по Stanford.

Из них у 8 пациентов расслоение ограничивалось нисходящим отделом грудной аорты, а у 17 пациентов – распространялось на брюшную аорту. У 14 человек было выявлено вовлечение в патологический процесс висцеральных ветвей, преимущественно почечных артерий (13 случаев) с формированием их стеноза более 50% у 8 пациентов. Таким образом, боль в спине беспокоила пациентов значительно реже, чем боль в груди и была не характерна для пациентов с изолированным расслоением восходящего отдела аорты (ІІ тип по DeBakey). При этом более часто (в процентном отношении) боль в спине беспокоила пациентов с ІІІ/В типами расслоения по DeBakey/Stanford, однако различия в частоте этого симптома имели невысокую степень достоверности (ф*1:3 = 1,64; ф*АВ = 2,05; 0,1>p>0,05). Не было получено и данных о значимой связи между наличием перехода расслоения на почечные артерии и возникновением болей в спине (критерий сопряженности Пирсона (С) =1,61 — слабая связь). Также отсутствовала связь между болями в спине и переходом расслоения на другие висцеральные ветви (С=0,49; С=0,52 для чревного ствола и ВБА соответственно).

Боли в животе отмечались у 17 из 132 пациентов (12,9%): у 10 человек с расслоением I типа по DeBakey (A по Stanford) и у 7 с III типом расслоения по DeBakey (В по Stanford). У пациентов с изолированным расслоением восходящего отдела такой жалобы не было. В 13 случаях из 17 расслоение распространялось на брюшную аорту, в 11 случаях в патологический процесс были вовлечены висцеральные ветви: чревный ствол – 6 наблюдений, в 5 из которых был определен стеноз более 50%; ВБА изменена – 6 случаев гемодинамически значимых стенозов (из них - одна окклюзия), почечные артерии – 9 случаев, из них 6 - со стенозами свыше 50% (в том числе одна окклюзия). Количество вовлеченных сосудов было больше, чем число случаев перехода расслоения на ветви, поскольку у 7 пациентов были поражены несколько висцеральных ветвей одновременно. Таким образом, боль в животе беспокоила только пациентов с расслоением аорты I и III типа по DeBakey, что соответствовало A и B типам по Stanford, при этом достоверных различий в частоте этого симптома у пациентов с указанными вариантами расслоения не было (ϕ *1:3 = 1,02; ϕ *AB = 1,47; p>0,1). Связь между КТ-признаками поражения чревного ствола / верхней брыжеечной артерии /почечных артерий и возникновением болей животе была также слабой (C=0.16/C=0.17/C=0.14)В соответственно). При этом, если анализировать корреляцию между болями в животе и наличием гемодинамически значимых (более 50%) стенозов висцеральных артерий, то

отмечено, что критерий хи-квадрат растет, и коэффициент сопряженности С увеличивается до 0,17/0,18/0,15 соответственно. Однако эта связь остается слабой и статистически недостоверной.

С болью в ногах различной степени выраженности поступили 24 пациента из 132 (18,2%): 15 с расслоением I типа по DeBakey (А по Stanford) и 9 с расслоением III типа по DeBakey (В по Stanford). У 23 из них были КТ-признаки перехода расслоения на подвздошные артерии с наличием во всех случаях гемодинамически значимых стенозов (более 50%), в том числе – 5 окклюзий. В этой группе пациентов выявлена относительно сильная связь между наличием КТ-признаков вовлечения в патологический процесс подвздошных артерий и болью в ногах (критерий хи-квадрат 31,2, C=0,44). При этом, если речь шла о гемодинамически значимых стенозах, значение критерия хи-квадрат возрастало до 78,5, а критерия сопряженности Пирсона – до 0,61, что соответствовало наличию статистически достоверной (p<0,001) сильной связи между наличием КТ-признаков гемодинамически значимого стеноза подвздошных артерий и возникновением боли в ногах.

Общемозговая неврологическая симптоматика (головная боль, головокружение, помутнение сознания вплоть до обморока) наблюдалась у 35 пациентов из 132 (26,5%): у 26 человек с расслоением І типа по DeBakey (A по Stanford) и у 9 с расслоением ІІІ типа по DeBakey (B по Stanford). Различий по наличию общемозговой симптоматики в группах пациентов с A и В типами расслоения по Stanford, как и с I и ІІІ типами по DeBakey, не выявлено, хотя признак встречался более, чем у 25% пациентов с ОРА. Вовлечение брахиоцефальных ветвей в данной группе пациентов наблюдалось в 18 случаях (17 – при типе A, 1 – при В типе по Stanford в виде ретроградного тромбоза), из них в 12 были выявлены КТ-признаки гемодинамически значимых стенозов, в том числе у 3-х окклюзионные изменения левой общей сонной артерии. Связь между наличием общемозговой симптоматики и КТ-признаками вовлечения в патологический процесс брахиоцефальных ветвей была слабой (C=0,17).

Специфические клинические проявления нарушения мозговой деятельности, такие как преходящее нарушение речи (3 наблюдения), нарушения чувствительности лица и конечностей (4), зрения (2), двигательные расстройства (8) - вплоть до параплегии (в одном случае) были диагностированы у 12 человек. Во всех наблюдениях выявлен переход расслоения на брахиоцефальные артерии с наличием гемодинамически значимого (более 50%) стеноза одной или нескольких ветвей дуги аорты. Таким образом, степень связи между КТ-признаками стенозов брахиоцефальных ветвей аорты свыше 50% и наличием специфических неврологических расстройств была определена как сильная (критерий хи-квадрат с поправкой Йейтса 43,9, нормированное значение коэффициента Пирсона – 0,74).

Анализ результатов КТ-исследований в послеоперационном периоде

Всего было прооперировано 112 пациентов, из них у 67 в раннем послеоперационном периоде (на 7-14 сутки после операции) КТ исследование проведено у 22 человек из группы с мальперфузионными осложнениями и у 45 человек без таковых.

Послеоперационная КТ выполнена всем пациентам с операцией на грудном отделе аорты преимущественно открытым доступом (60 человек), в 7-ми случаях -вмешательство по методике TEVAR на нисходящей грудной аорте, в одном случае — с одновременным стентированием брюшной аорты.

Изолированное протезирование восходящего отдела (ВОА) аорты было выполнено 9 пациентам (в одном случае – с одновременным стентированием коронарных артерий); протезирование ВОА и частичное протезирование дуги аорты - у 22 человек, (из них протезирование БЦА в 15 случаях); протезирование ВОА и тотальное протезирование дуги аорты - у 27 человек, (во всех случаях – с протезированием БЦА и в одном – со стентированием коронарных артерий); изолированное протезирование нисходящего отдела аорты - у 2 пациентов. Таким образом, количество операций с протезированием

БЦА в группе послеоперационного контроля составило 42, коронарные артерии были стентированы в 2-х случаях, у одного пациента проводилось подвзошно-бедренное протезирование.

При оценке проходимости протезированных ветвей аорты было определено полное восстановление кровотока по коронарным артериям в обоих случаях и в общей подвздошной артерии в единственном случае протезирования. Клинических признаков мальперфузии, как и признаков статического стеноза в коронарных артериях и окклюзии в подвздошной артерии, после операции выявлено не было.

Из 42 послеоперационных наблюдений с протезированием БЦА, лишь у 19 человек при первичном КТ-исследовании зафиксирован переход расслоения на БЦА, при этом у 8 пациентов стеноз являлся гемодинамически значимым. У остальных 23 пациентов вмешательство на БЦА было выполнено как необходимая часть протезирования дуги аорты. При повторном КТ-исследовании в раннем послеоперационном периоде у 12 человек не выявлено никаких признаков стенозов, либо распространения диссекции на ветви дуги аорты, у 7 больных переход расслоения на БЦА сохранен, но не имел гемодинамического значения, кровоток был полностью компенсирован, данных о наличии клинических проявлений мальперфузии у этих пациентов также не получено. Таким образом, можно сделать вывод о том, что в 63% случаях после протезирования БЦА и последующем исследовании признаки диссекции отсутствовали, в 37% переход расслоения на ветви сохранялся, но не имел гемодинамического значения.

При оценке состояния истинного и ложного просветов в группе послеоперационного контроля (n=67) одинаковая степень контрастирования истинного и ложного каналов отмечена в 30 случаях (45%), более низкая степень контрастирования ложного хода, свидетельствующая о его частичном тромбировании - в 22 наблюдениях (33%), отсутствие контрастирования ложного просвета (полное тромбирование) – в 15 случаев (22%).

С целью анализа динамики размеров истинного просвета у пациентов с I и III типами расслоения по DeBakey (58 пациентов) было выполнено измерение диаметра и площади просветов в абдоминальном отделе аорты, аналогичное по методике и уровням измерения таковому в предоперационном периоде (отношение площади ИП к площади всей аорты). На основе полученных данных пациенты разделены на группы со значимыми изменениями относительной площади ИП (более чем на 10%) и группу стабильного ремоделирования, где относительная площадь ИП изменялась в любую сторону менее чем на 10% (таблица 6).

Таблица 6 - Динамика изменений относительной площади* истинного просвета в раннем послеоперационном периоде у пациентов с I и III типами расслоения по DeBakey (n=58).

	Количество случаев увеличения относительной площади ИП ≥10%	Количество случаев уменьшения относительной площади ИП ≥10%	Количество случаев изменений относительной площади ИП < 10%
Уровень аортального отверстия диафрагмы	20 (34%)	4 (7%)	34 (59%)
Уровень отхождения почечных артерий	16 (28%)	6 (10%)	36 (62%)
Уровень бифуркации аорты	18 (31%)	5 (9%)	35 (60%)

^{*}Относительная площадь ИП рассчитывалась как отношение площади истинного просвета к общей площади среза аорты, выраженное в процентах.

Таким образом, представленные данные продемонстрировали, что в 30% наблюдений было отмечено значимое увеличение истинного просвета, что положительно сказывалось

на гемодинамике, состоянии кровотока по ветвям аорты и кровоснабжении органов. Наблюдалось уменьшение степени динамического стеноза (с пролабированием ложного просвета в истинный) вплоть до полного его отсутствия в 12 случаях — 5 стенозов чревного ствола, 2 — верхней брыжеечной артерии (рисунок 8), 4 — почечных артерий и один стеноз общей подвздошной артерии.

Рисунок 8 - КТ-аортография, аксиальный срез, артериальная фаза сканирования КТ-признаки восстановления проходимости верхней брыжеечной артерии (ВБА) у пациента в послеоперационном периоде.

А – динамический стеноз ВБА с пролабированием ложного просвета в истинный, Б – восстановление проходимости ВБА за счет нормализации размеров истинного просвета.

Выводы

- 1. Применение при остром расслоении аорты оптимизированного протокола КТ-ангиографии, включающего обязательную нативную и позднюю артериальную фазы сканирования у всех пациентов и ЭКГ- синхронизацию в трехфазном режиме у пациентов с подозрением на вовлечение восходящего отдела, позволило повысить точность выявления расслоения аорты и мальперфузионных осложнений с 96,4% до 98,6%, а чувствительность и специфичность до 100% и 90,9% соответственно.
- 2. Усовершенствованная методика постпроцессинговой обработки способствует оценке у пациентов с мальперфузионными осложнениями расслоения аорты степени компрессии истинного просвета, которая достоверно (p<0,05) выше на всех уровнях измерений, чем в группе без мальперфузии, а также выявлению степени компрессии истинного просвета более чем на 75% как предиктора развития мальперфузионных осложнений при любом типе расслоения (C=0,64).
- 3. Сопоставление результатов КТ с клиническими данными установило статистически значимую связь между КТ-признаками перехода расслоения на брахиоцефальные артерии и наличием специфической неврологической симптоматики (C=0,74, p<0,001), и между КТ-признаками гемодинамически значимых стенозов подвздошных артерий и болью в ногах (C=0,61, p<0,001).
- 4. Компьютерная аортография в послеоперационном периоде позволяет проводить одновременную оценку изменения просвета аорты, степени стенозов сосудов и динамику ишемических изменений органов, сравнив их в до- и послеоперационном периодах (в протезированных брахиоцефальных артериях в 63% случаях при повторном исследовании признаков диссекции не выявлено, в 37% переход расслоения на ветви сохранен, но не имел гемодинамического значения). Это позволяет судить об эффективности протезирования аорты и ее ветвей и координировать дальнейшую тактику ведения пациента.

Практические рекомендации

- 1. У пациентов с острым расслоением аорты целесообразно включать в протокол КТ исследования нативную фазу, основное сканирование проводить с задержкой 35-40 секунд, использовать ЭКГ-синхронизацию по трехэтапному варианту у пациентов с подозрением на расслоение восходящего отдела.
- 2. Область сканирования у пациентов с острым расслоением аорты должна захватывать и сосуды шеи, и подвздошные артерии.
- 3. Необходимо учитывать закономерности расположения ложного и истинного просветов на разных уровнях расслоения при планировании КТ- исследования.
- 4. Выявление динамических стенозов может быть затруднено в тех случаях, когда речь идет о колеблющейся створке отслоенной интимы. При этом следует обращать внимание на интенсивность кровотока по измененной артерии и признаки мальперфузии органов соответствующего бассейна (наиболее часто динамический стеноз встречается в висцеральных артериях) в виде снижения градиента их плотности в позднюю артериальную фазу контрастирования.
- 5. Одновременное сочетание поражения брахиоцефальных, висцеральных и подвздошных артерий целесообразно расценивать как предиктор мальперфузионных нарушений.
- 6. Компьютерную томографию целесообразно использовать в диагностическом алгоритме у пациентов с острым расслоением аорты и в раннем послеоперационном периоде, поскольку она дает возможность оценить степень изменения просвета аорты и динамику стенозов ее ветвей наряду с контролем за ишемией органов и выявлением послеоперационных осложнений.

Список работ, опубликованных по теме диссертации

- 1. Оценка состояния ветвей аорты при ее расслоении с помощью многосрезовой компьютерной томографии / А.М. Нунаева, О.А. Забавская, Р.Ш. Муслимов, Л.С. Коков // Диагностическая и интервенционная радиология.- 2019.-Т. 13, №4.-С. 11-20.
- 2. Роль компьютерной томографии в диагностике мальперфузионного синдрома при остром расслоении аорты (обзор литературы) / А.М. Нунаева, О.А. Забавская, Р.Ш. Муслимов, Л.Т. Хамидова, Л.С. Коков // Вестник медицинского института «РЕАВИЗ». Реабилитация, Врач и Здоровье. − 2022. − Т. 12, № 3. − С. 49-59.
- 3. Патент №2792768 Российская Федерация, МПК 51 А61В 6/02 (2006.01) Способ оценки степени риска разрыва аневризмы брюшного отдела аорты по данным компьютерной аортографии / Д. 3. Тутова (RU), Р. Ш. Муслимов (RU), Л. Т. Хамидова (RU), С. С. Петриков (RU), И. П. Михайлов (RU), Л. С. Коков(RU), А. М. Нунаева (RU); патентообладатель: Государственное бюджетное учреждение здравоохранения города Москвы ГБУЗ НИИ скорой помощи им. Н.В. "Научно-исследовательский институт скорой Склифосовского Департамента здравоохранения города Москвы" (ГБУЗ "НИИ СП им. Н.В. Склифосовского ДЗМ") (RU). №2022113245/14(027578); заявл. 18.05.2022; опубл. 02.02.2023, Бюл. № 9.

Список сокращений

БЦА – брахиоцефальные артерии

ВСА – внутренняя сонная артерия

ИП – истинный просвет

КТ – компьютерная томография

КТ-АГ (КТ-ангиография) – компьютерная томография сосудов

РА – расслоение аорты

ЭКГ – электрокардиография

IRAD (The International Registry of Acute Aortic Dissection) – международный регистр острых расслоений аорты

TEVAR (Thoracic Endovascular Aortic Repair) – эндоваскулярное протезирование аорты